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Abstract: Fucosyltransferases (FucTs) are enzymes that transfer L-fucose from GDP-fucose to a glycoside or a peptide. 

They have important roles in a variety of diseases including cancer and autoimmune disorders, viral and bacterial 

infections and inflammatory processes, and thus they represent important drug targets for the development of agents for 

the treatment of such disorders. This review highlights recent developments regarding carbohydrate mimics as inhibitors 

of FucTs. The most recent and relevant synthetic strategies are described. 
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1. INTRODUCTION 

 Carbohydrates play important roles in living organisms. 
Their participation in energy metabolism and as constitutive 
elements in structural support matrices of plants, fungi and 
bacteria are well understood. In contrast, the knowledge 
about carbohydrates as part of glycoconjugates, which are 
key elements in inter- and intracellular communication (e.g. 
signaling, host-pathogen interaction, immunological recognition 
and molecular and cellular targeting) [1] is still very 
incomplete [2,3]. As a result, most of the detailed studies on 
a variety of diseases including viral and bacterial infections, 
cancer metastasis, autoimmune dysfunctions and inflammatory 
reactions involve multivalent enzyme-sugar interactions  
[4-7]. 

 Numerous natural and synthetic carbohydrate derivatives 
with agonistic and antagonistic activities at carbohydrate 
receptors [8] or carbohydrate-processing enzymes have now 
been identified [9-11]. Among those enzymes glycosidases 
[12,13] and glycosyltransferases are of special importance 
due to their implication in a large number of biological 
processes [14-18]. Indeed, a large number of carbohydrate 
mimetics that act as glycosidase/glycosyltransferase inhibitors 
have also been discovered [19-23]. Although carbohydrate 
enzyme inhibitors can play important roles as modulators of 
disease processes, [24,25] they suffer from several 
limitations that restrict their development into drugs. Many 
carbohydrates are rapidly degraded by digestive, plasma and 
cellular glycosidases and frequently, bind to their targets 
with low affinities. For these reasons the major interest in 
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carbohydrate mimicry has been directed towards glycosidase 
and glycosyltransferase inhibitors [19,26-31]. 

 In particular, fucosyltransferases (FucTs) a family of 

enzymes that transfer L-fucose from GDP-fucose to an 

acceptor substrate (a glycoside or a peptide) are of a great 

interest [32-34]. According to the fucosylation site, FucTs 

are classified into �-1,2 (FUT1 and FUT2), �-1,3/4 (FUT3, 

FUT4, FUT5, FUT6, FUT7 and FUT9), �-1,6 (FUT8) and 

protein O- (POFUT1 and POFUT2) fucosyltransferases [32]. 

In eukaryotes the former three subgroups are found in the 

Golgi apparatus and transfer L-fucose to other glycosides. 

POFUTS represent a minor number of glycosyltransferases 

located in the endoplasmic reticulum and transfer L-fucose 

to peptides [35-36]. The intensive investigations focused on 

inhibition of FucTs are due to the implication of L-fucose 

transfer in several important pathologies [37-41]. Well-

known examples are human FucT V that catalyzes 

fucosylation of the 3-hydroxyl group of N-Ac glucosamine 

in siallyllactosamine to form the antigen sialyl Lewis x 

(sLe(x)), [42] a target in cancer therapy and inflammatory 

processes and POFUT1, which is involved in the 

development of many tissues, including cell fate as well as in 

proliferation, apoptosis, differentiation and migration [43]. 

In the case of POFUT1 their inhibition could also be a 

strategy against a large number of diseases such as several 

types of T-cell leukemias [44,45] through attenuation of 

Notch signaling pathway [46,47].  

 In this review we will present major and representative 

recent achievements on the chemistry of carbohydrate mimics 

directed to the synthesis of FucTs inhibitors, [48] with special 

attention on the more active compounds. Among these 

compounds are O- and C-glycosides, carbacycles and 

nitrogen-containing heterocycles such as piperidines and 
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pyrrolidines (Fig. 1). The focus of all discussions will be on 

chemical methods, while biological activities will be 

mentioned where appropriate. For additional information on 

biological aspects of FucTs and fucosylation a number of 

excellent reviews have been published elsewhere [33,34, 

49-51].  

2. O-GLYCOSIDES 

 The first example of a mechanism-based 
fucosyltransferase inhibitor that utilizes both the acceptor 
and donor recognition potential of the enzyme active site is 
represented by compound 5. This compound was able to 
inhibit �-(1,2)-fucosyltransferases with Ki = 4.4 �M exhibiting 
the characteristics of a classic bisubstrate analogue. 
Interestingly, derivative 4, which lacks the GMP moiety was 
also found to be a competitive inhibitor with respect to the 
acceptor (Ki = 133 �M) and a mixer inhibitor with respect to 
GDP-fucose (Ki = 760 �M). Compounds 4 and 5 were 
prepared from a conveniently protected galactosyl bromide 1 
as illustrated in (Scheme 1) [52] After obtention of the 
phenyl glycoside 2 and incorporation of the side chain into 
C-2 of the galactose, deprotection of 3 afforded 4 in 58% 
yield. Compound 5 was obtained by incorporating the GDP 
moiety with GDP-morpholidate in the presence of tri-
octylamine. The same authors reported inhibition of �-(1,2)-, 
�-(1,3)- and �-(1,4)-fucosyltransferases by deoxygenated 
substrates at C-4 position of the hexose moiety [53]. 

 The trisubstrate analogue 10, a potential inhibitor of �-
(1,3)-fucosyltransferases has been prepared in 6 steps and 
41.5% overall yield from protected 1-thio-�-L-fucopyranose 
6.[54] Key steps of the synthesis consisted of chemical 
fucosylation and incorporation of the GMP moiety (Scheme 2). 

 Wong and co-workers reported a convenient procedure 

for preparing 2-deoxy-2-fluorosugar nucleotides via 
Selectfluor-mediated electrophilic fluorination of glycals. 

The obtained fluorinated sugar nucleotides have been used as 

probes for FucTs II, V, VI and VII [55]. The same authors 
reported the synthesis of N-acetyllactosamine derivatives 14 

incorporating aromatic moieties at the anomeric center 

separated by a linker (Scheme 3). These derivatives 
prepared through typical chemical O-glycosylation of 

trichloromacetimidate 13 with protected 12 revealed 

differential inhibition of sLe
X
 expression [56]. Indeed, 

enzyme kinetics experiments demonstrated that compounds 

14 and, in particular those with naphthyl moieties are affinity 

inhibitors for FucT IV and VI. The corresponding methyl 
glycoside of compounds 14 (R=Me) in which the C-2' 

hydroxyl group of the galactose moiety was epimerized, 

showed to be a remarkably selective inhibitor for FucT VI 
[57]. Based on 3D-structure of sLe

x
 bisubstrate analogues 

formed by guanosine-5'-diphospho-L-galactose as a donor 

mimic and 2-hydroxyethyl-�-D-galactoside as an acceptor 
mimic were designed [58]. These analogues were moderate 

inhibitors of FucT VI suggesting that they bound to the 

donor site but not the acceptor binding site. 

3. C-GLYCOSIDES 

 C-Fucopyranosyl analogues of GDP-L-fucose have been 

synthesized from tetra-O-acetyl-�-L-fucopyranose 15 
through synthetic routes providing �- and �-C-fucosides with 

high selectivity (Scheme 4) [59]. For the synthesis of 17 

equatorial C-glycosylation took place in the cobalt catalyzed 
siloxymethylation of 15, which took place in excellent 

stereoselectivity (>20:1). The homologation towards 20 was 

achieved by C-allylation catalyzed by trimethylsilyl triflate. 

 The trisubstrate analogue 25 has been prepared through 

NIS-mediated condensation of fucosyl donor 21 with 

protected glucopyranoside 22 as a key step. Further 
reduction of the azido function, elongation at the 1-amino 

group, deprotection and coupling with sugar 24 containing 

the heterocyclic base provided the target derivative 25 
(Scheme 5) [60]. 
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Fig. (1). Glycosyltransferase inhibitors. 
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Scheme (1). Synthesis of an inhibitor of �-(1,2)-fucosyltransferases.  
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Scheme (2). Synthesis of an inhibitor of �-(1,3)-fucosyltransferases. 
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Scheme (3). Synthesis of N-acetyllactosamine derivatives. 
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Scheme (4). Synthesis of C-fucopyranosyl analogues. 
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Scheme (5). Synthesis of a trisubstrate analogue. 
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 The neutral C-disaccharide 27 was prepared applying the 
Vogel's naked sugars strategy. After several steps, C-
disaccharide 27 was obtained from enone 26. Further 
transformations of 26 furnished the target compound 27 

(Scheme 6), which was revealed as good inhibitor of human 
FucT VI (Ki = 32 nM) [61]. 

 A series of C-fucopyranosyl pyranosides have been 
prepared from the corresponding anomeric sulfoxides and 
tested as inhibitors of �-(1,6)-fucosyltransferases. 
Mechanical and dynamical molecular modeling was used to 
establish structure-activity-relationship results. The modest 
inhibitory activity found in most cases was explained on the 
basis of adoption of a 

4
C1 conformation [62].  

4. CARBACYCLES 

 The unsaturated carbocyclic analogue of GDP-fucose 31 
has been prepared through an intramolecular Emmons-
Horner-Wadsworth olefination of the corresponding 2,6-

dioxophosphonate 28, readily available from L-fucose in 4 
steps and 58% yield. The formation of the endocyclic double 
bond took place with retention of stereogenic centers at C-2, 
C-3 and C-4. Chemo- and stereoselective reduction of the 
�,�-unsaturated inosose 29 was crucial for the obtention of 
31 and it was obtained upon treatment with sodium 
borohydride in the presence of cerium trichloride (Scheme 7) 
[63]. The complete reduction in two steps of intermediate 29 
afforded a cyclohexane that allowed preparation of the 
corresponding saturated analogue of 31 (not represented in 
Scheme 7). Both 31 and its saturated analogue exhibited a 
potent inhibitory activity against �-(1,3/4)-fucosyltransferases 
solubilized from colonia adenocarcinoma Colo205 cells.  

 The inhibitory activity of 31 and its saturated analogue 
has been investigated using ESI mass spectrometry. 
Compound 31 showed to be a competitive inhibitor with  
Ki = 67.1 �M similar to the Km value for GDP-fucose  
(50.4 �M) [64]. 
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Scheme (6). Synthesis of a neutral C-disaccharide. 
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 A similar unsaturated carbocyclic analogue was prepared 
by Wong and co-workers starting from p-methoxyphenyl -D-
mannopyranose 32 The corresponding GDP-fucose analogue 
34 (Scheme 8) showed inhibition constants Ki = 8 �M and  
Ki = 6 �M for FucT V and FucT VI, respectively. 

5. PIPERIDINES 

 Azatrisaccharide 38, containing a piperidine ring 
prepared by covalently linking the endocyclic nitrogen of -L-
homofuconojirimycin 35 to the hydroxyl group at C-3 of 
protected N-Ac-lactosamine 37 (Scheme 9) was found to be 
an effective inhibitor of FucT V in the presence of GDP [42]. 
The authors proposed a synergistic inhibition through the 
formation of a complex between GDP and 38 that mimics 
the transition state of the enzyme reaction. The iminocyclitol 
component of compound 38 can also be accessed through a 
chemoenzymatic strategy that allowed the synthesis of 
libraries of derivatives for the discovery of new selective 
fucosidase inhibitors [65]. Among these derivatives new 
compounds bearing N-Ac-lactosamine mimetics with an 
additional amino group has also been synthesized [66]. 
Azadisaccharides including those tethered by an aromatic 
ring also showed significant synergistic inhibition of FucT 
IV [67]. 

 Six-membered GDP-iminocyclitols like 42 have been 
prepared chemoenzymatically by using fructose-diphosphate 
aldolase to obtain key intermediate aldol products such as 40 
(Scheme 10) [68]. Compound 42 showed inhibitory of FucT 
V and VI with Ki = 13 and 11 �M, respectively [69]. 

 A rigid bicyclic analogue of �-L-fucose, prepared from 
protected L-gulonolactone was revealed as a moderate 
inhibitor of fucosyltransferases [70]. On the other hand, 
polyhydroxylated indolizidines showed to be good inhibitors 
of a �-(1,6)-fucosyltransferase from Rhizobium sp with a 
IC50 of 4.5·10

-5
 M in the best case [71]. Those bicyclic 

compounds prepared through intramolecular conjugate 
addition of a �-oxygenated-�,�-unsaturated sulphone [72].  

6. PYRROLIDINES 

 In a similar way to the above mentioned piperidine-
containing compounds, polyhydroxylated pyrrolidines 
showed synergistic inhibition of �-(1,3)-fucosyltransferases 
in the presence of GDP [73-74]. Those five-membered 
azasugars have been synthesized through a chemoenzymatic 
approach based on aldolase reactions [75] quite similar to 
that illustrated in (Scheme 10). Incorporation of the five-
membered nitrogen heterocycle to a GDP conjugate has been 
reported by using such chemoenzymatic approach (Scheme 
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11) [76]. Condensation of 43 with DHAP, catalyzed by FDP-
aldolase afforded, after catalytic hydrogenation the 
phosphorylated iminocyclitol 44. Incorporation of GMP 
moiety yielded inhibitor 45. This compound showed to 
inhibit FucT IV in micromolar concentrations. 
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7. OTHER ANALOGUES 

 Several GDP-fucose mimics bearing different groups in 
the place of the fucose unit, other than carbohydrates or 
analogues like iminocyclitols have been described. As an 
example, GDP-hexanolamine 47 easily available through 
condensation of GMP-morpholidate and hexanol phosphate 
46 (Scheme 12) was found to be a competitive inhibitor of a 
recombinant �-(1,3)-fucosyltransferase [77]. 

 Wong and co-workers employed click-chemistry to 
design a potent and highly selective inhibitor of human �-
(1,3)-fucosyltransferase [78]. By using triazole chemistry a 
library of compounds incorporating hydrophobic units linked 
to GDP through a triazole tether were prepared (Scheme 13). 

A total of 85 compounds were prepared and after screening in 
situ compound 52 was selected. This compound showed potent 
inhibitory activities against several fucosyltransferases 
including FucT III (IC50 = 1.0 �M), FucT V (IC50 = 0.9 �M) 
and FucT VI (IC50 = 0.15 �M).  

 The use of monovalent carbohydrate microarrays allowed 
multiple screening directed to the high-throughput identification 
of fucosyltransferase inhibitors. By this method several 
compounds with nanomolar values of Ki were discovered [79]. 
Moreover, application of quantitative MALDI-TOF-based 
screening of compounds libraries constructed by way of 
triazole click-chemistry have recently allowed the discovery 
of compounds 53 and 54 as selective inhibitors for human 
recombinant �-(1,3)-fucosyltransferase (Ki = 293 nM) and �-
(1,6)-fucosyltransferase (Ki = 13.8 �M), respectively [80]. 

 In addition to the various compounds discussed above, 
bearing a GDP unit, which demonstrate the necessity of 
interaction of such unit in the active site (in agreement to 
mechanistic studies), two types of completely different 
structures have been found in Nature to posses inhibitory 
activity against fucosyltransferases. That is the case of the 
octa- and nonaprenylhydroquinone sulfates 55 and 56 that 
have been isolated from the marine sponge Sarcotragus sp. 
Compounds 55 and 56 inhibited FucT VII with IC50 values 
of 3.9 and 2.4 �M, respectively [81]. Stachybotrydal 57 
isolated from the fungus Stachybotrytis cyclindrospora 
exhibited a potent inhibitory activity against FucT V. 
Compound 57 is an uncompetitive inhibitor with respect to 
GDP-fucose and a non-competitive inhibitor with respect to 
N-Ac-lactosamine with Ki values of 10.7 and 9.7 �M, 
respectively [82].  

8. CONCLUDING REMARKS 

 In summary, a variety of carbohydrates and structural 
analogues bearing a GDP unit in their structure should be 
considered as promising leads with inhibitory properties 
against FucTs. The presence of the GDP moiety seems to be 
crucial (with some exception) for achieving a good 
inhibitory activity, probably due to its direct interaction with 
hydrophobic residues located close to the active site of the 
enzyme. Interestingly, the presence of the fucose unit is not 
essential as demonstrated by the discovery of potent 
inhibitors through combinatorial chemistry techniques. On 
the other hand, potent inhibitors have been discovered with 
the common feature of incorporating a highly hydrophobic 
moiety, indicating the presence of a hydrophobic pocket 
close to the active site. Because of these reasons the 
preparation of particular complex structures designed with 
the aid of computational methods (docking) and structural 
analysis (X-ray and NMR) still remains a challenge and 
much effort will be needed in the future. Furthermore, there 
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are currently no compounds in clinical trials so, the 

development of new carbohydrate mimics that improve the 

binding properties to the enzyme active site could spark the 

use of such compounds as drug candidates for the treatment 

of a variety of diseases. 
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ABBREVIATIONS 

Ac = Acetyl 

Bn = Benzyl 

DCE = Dichloroethane 

DHAP = Dihydroxyacetone phosphate 

DMAP = 4-(Dimethylamino)pyridine 

DMF = Dimethylformamide 

ESI = Electrospray ionization 

FucT = Fucosyltransferase 

FDP = Fructose diphosphate 

GDP = Guanosine diphosphate 

GMP = Guanosine monophosphate 



Fucosyltransferase Inhibitors Mini-Reviews in Medicinal Chemistry, 2012, Vol. 12, No. 14    1463 

NIS = N-iodosuccinimide 

PPTS = Pyridinium p-toluensulfonate 

Py = Pyridine 

SLe
x
 = Sialyl Lewis x 

SAR = Structure-activity relationship 

TBHP = tert-butyl hydroperoxide 

TBS = tert-butyldimethylsilyl 

Tf = Trifluoromethanesulfonyl 

TMS = Trimethylsilyl 
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